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THE DYNAMICS OF RHEONOMIC LAGRANGIAN SYSTEMS WITH CONSTRAINTS* 

V.V. RUMYANTSEV 

General rheonomic Lagrangian systems with non-integrable constraints are 
considered. Their equations of motion, in the form of the Lagrange 
equations with multipliers, are equivalent to the variational equation 
expressing the Hamilton principle in Hijlder form, which occurs when 
determining the synchronous Chetaev variations. A parametric study of 
the motions of such systems is made in the extended configurational space 
R n+l with arbitrarily chosen parameters. The virtual displacements Aqi 

in the space R,, represent the total (asynchronous) variations for the 

configurational space R,. The Hamilton principle with homogeneous 
Lagrangian is used to derive n+ 1 parametric equations of motion with 
multipliers, one of which follows from the remaining n multipliers. When 
the time t is chosen as a parameter, the equations take the form of the 
usual equations with multipliers. 

When the Lagrangian is independent of t and the constraints are 
homogeneous with respect to the velocities, the equations of motion have 
an energy integral corresponding to the ignorable coordinate t. Elimina- 
tion of t' from the Hamilton principle leads to the principle of least 
action in the Jacobi or Lagrangian form. The energy integral is used to 
reduce the order of the initial equations, and a generalization of the 
Jacobi-Whittaker equations is obtained as a result. Finally, the problem 
of two forms of the theorem on energy is discussed for the usual dynamic 
rheonomic systems with constraints. 

1. Let us consider a general rheonomic Lagrangian system with non-integrable constraints 
characterized by the Lagrange function L(q,r,q') and perfect indepdent constraints of the form 

fl (6 t, 9') = 0 (I = I, . . ., 4 (1.1) 

in general, non-linear in qi’s dq,/dt. Here, if we use the mechanical terminology, /I./ qi(i = 
1 7. . ., n) are the independent Lagrangian coordinates, t is the time and qf’ are the generalized 
velocities. We assume that the functions L,(q, t, q’) E C2, fl (q, t, q’) E Ca are defined at all 
points of some fixed, simgly connected region c of the space R,,,, of variables pi, t, qi’, where 

#O, rank -% _r ( dqi ) - 
The equations of motion of the general rheonomic Lagrangian system with constraints have 

the form of the Lagrange equations with undetermined coefficients pI 

d dL aL ----= 
dt dqi’ aqi (1.2) 

which must be supplemented by the constraint equations (1.1). The general solution of the 
system of equations (l.l), (1.2) depends on 2n -r arbitrary constants determined by specify- 
ing the initial data. Equations (1.2) can be obtained from the Hamilton principle in the 
HGlder form 

1, 
S 6L dt = 0, 6qi = 0 : t = to, tl (1.3) 
1" 

The symbol 6 denotes the isochronous variation (for 6t = 0) i.e. the variation on the 
virtual displacement, and the virtual displacements Qi (t) E C2 under the constraints (1.1) 
satisfy the Chetaev /2/ conditions 
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c : al,6&=0 (Z=i,...,r) i-_; dq;’ 
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(1.4) 

The actual trajectory written in the parameteric form gi = si(t) satisfying the equations 
(1.1) and passing through two fixed points P,(qi") and P,(qil) of the configurational space R, 
at fixed instants of time to< t1 respectively, is compared in (1.3) with the similar curves 

4i = Pf Ct) + hi. The curves also connect the points P,and P,, and the time of motion of the 
system between them along all comparison curves do not, in general, satisfy (l.l), when the 
constraints are non-integrable. This implies that the Hamilton principle (1.3) does not 
represent, in the case of a non-holonomic system, a variational principle in the sense of 
variational computation, but merely a variational equation. Also, as was shown before in /3/, 
the equations of motion (1.2) are in general not equivalent to the Euler-Lagrange equations 
for the variational Lagrange problem. 

In this connection we note the incorrectness of the assertion /4, 5/ that the equations 
in question are equivalent in the case of the constraints homogeneous in qi'. The equation 

n 

does not generally imply, notwithstanding /4/, the relation 

afz d all 
-=-7 
N, dt dq. 1 

Conversely, we can obtain the principle (1.3) from (1.2), taking (1.4) into account. To 
do this, we multiply (1.2) by 6qi, carry out the summation over all i, take (1.4) into account 
and integrate in t from to to t,. From this it follows, that we have, for the general 
Lagrangian systems with constraints, full equivalence /l/ between the equations (1.2), (1.1) 
and variational equation (1.3) when deriving the virtual displacements frcsn (1.4). 

We use the time t as the independent variable in (1.2), (1.3). The time plays a special 
role in the processes which take place in the configurational space &in time t. Generally, 
the equations (1.2) and (1.3) are invariant with respect to the point transformations of the 
Lagrangian coordinates qi, but not invariant with respect to the transformations of the 
variable t. 

Problem (1.3) can obvioulsy be considered in an extended configurational space II,,, 
whose point coordinates are qi, t and where the motion is represented by a curve q,(t) speci- 
fiednowinthe explicit, and not the parametric form. Here the integral in (1.3) is taken 
over all possible curves close to comparison curves, connecting two fixed points (qfD1 t3 and 

(pi’, tJ of the space R,+r. In both spaces, R, and R,,,, the number of equations (1.2), when t 
is used as the independent variable, is equal to the number n of the Lagrange coordinates qi. 
Together with (l.l), these equations fully describe the dyhamics of Lagrangian systems, both 
scleronomic and rheonomic. The reactions of the constraints (1.1) are also found. 

In variational computations, it is often more convenient to specify the comparison curves 
not in explicit, but in parametric form, with arbitrarily chosen parameter /6/. Inthedynamics 
of holonomic systems the parametrization enables us to show the close connection between 
various variational principles /7/. The same problem is also of interest in the case of non- 
holonomic systems /8/. 

We shall therefore consider the time t together with Lagrangian coordinates q,as the 
equivalent and independent variables representing the coordinates of the points belonging to 
the space R,,,. We shall denote these variables by &(u = I, . . ..n -I- 1) with 21 = Q* (i = 1, 

. ., n), &I,,1 = t. All these variables can be specified as continuous differentiable functions 
of some parameter z, chosen as an arbitrary function r (t)E Cl with &/dt> 0 for all values 
of t considered. The choice of the parameter has no special significance. We can replace 
the parameter 7 by any other parameters 0, provided that da/dr> 0. 

Suppose 2, = z=(r) are curves belonging to the class C'E&,+, such, that &'r d.q,ldr,are 
not simultaneously zero for any value of r. The curves, with certain specified directions 
along them, correspond to the possible motions of the holonomic system without constraints 
(1.1). However, when such constraints exist, which, in the variables +, take the form 

P, (~a, so' ) = 0 (I = 1, . * ., r) Cl.51 

then not all curves 2, =+0(r) will describe the possible motions of the system, but only 
those curves for which the variables &,&' satisfy the conditions (1.5). Here Ft (~a, &‘) are 
functions defined by the equations 

(1.6) 
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The functions do not depend explicitly on r, and represent homogeneous *unctions of 
zero power in 2~~'. so that 

nfl dF[ 

E rx,'=O (l=l,,..,r) 
G-1 n 

(1.7) 

(1.8) 

afl, ai, 
r=at 

aFt i *; df, 

=+I 
y=--T %l c ? Qi’ ygy 

i=1 
L 

Let us assume that when the constraints (1.5) hold, then the virtual displacements d& 
satisfy the Chetaev-type conditions 

(1.9) 

Taking (1.81, into account we can wxite conditions CL.91 in the form 

(l.10) 

Equating (L.10) and fl.4) we obtain 

h& = spi i-&-At (l.lli 

which mean that the virtual displacements dq, and R,,, represent, for the space R,, the 
complete (asynchronous) variations. 

When conditions (1.10) hold, we know /9/ that we can generalize the Hamilton principle 
(1.3) to the case of asynchronous variatians and write it in the form of the Foss principle 

Lr 

d$hd.f, Aqi=dr=o: t=t&tr 
i. 

(1.12) 

i.e. the Hamilton principle also holds fox the general Lagrangian systems with constraints in 
the case of asynchronously varied motions , provided that the motions take place hetween the 
same configurations and aver the same time interval /L/. 

In the case of the constraints (1.11, homogeneous in ql‘ and satisfying, in accordance 
with Euler's theorem on homogeneous functions, the conditions 

c J;f+= 
k&(q,t,q‘f=O ({=I,. . . *r) 

relations (l.J.0) by virtue of (l.l), take the form of the conditions 

il. 13) 

whichareidentiralwith (1,41; kg denotes the degreeofhomogeneityin 4; ofthefunctions fr fPV 
t,q’). Thuswe findthatwhenthe constraints (1.1) are homogeneous in q,‘, the classof synchronous 
variations (virtual displacements) 6qi is equivalenttothe classof asynchronous variations_ 

Using thegiven Lagrange function L (q,t,q’), 
space R,+1 in parameteric form, 

we determine the homogeneous Lagrangian for the 
by the following equation /7/: 

( 

3 
h&t =ca')=L XI,..., zs+rs--z1,... si % ' 

%l %r > 
Z,,I j1.24) 

The function A@,,&') doesnotdependexplicitlyon T andisclearlyapositively homogeneous 
first-degree function in x,', so that 

(1.15) 

Conversely, usingthegivenhomogeneaus Lagrangian A (l$r.rS'), weobtain’ihefo:lowingLagrange 
function.notrestricted by a similar condition: 

t (9, t. 9') = (1 (417 . . -x f&k, b, q,‘, ” . .I F*‘* 1) 
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Thus the functions A(&,&') and L(q,t,q’) are equivalent to each other in the sense 
that one defines the other. This implies the invariance of the element of Lagrangian action 

/7/ L (q, t, q’) dt = A km ~a’) dr 

in which case the Hamilton principle (1.31, on parametrization, takes the 

.c* 

s AA (Xa, X,') dr = 0, Ax, = 0 : 7 = to, tl 
T. 

with conditions (1.9). The value of the functional on the left-hand side 
depends, as we know, /6/, only on the curve X~ =&(z) in the space R,,,, 
tions xa(t) themselves. 

form 

(1.1G) 

of equation (1.16) 
and not on the func- 

The principle (1.161, together with (1.91, yield the parameteric equations of motion of 
a non-holonomic system in the space R,,, 

d aA 

27--q--az,= (1.17) 

where pL1 are undetermined multipliers. Combining equations (1.17) with the constraint equa- 
tions (1.5), we obtain a system of n + 1 j-r equations with the same number of variables XU, 

PI. However, equations (1.17), whose number is equal to the number of variables Xa, are not 
independent, but connected, as in the case of holonomic systems /7/, by the identity 

which is obvious by virtue of the homogeneity of the functions A(xa,k'), F, (xc:, xa’) in &land 
their independence of z. 

The last equation of (1.17) follows from the first n equations. Indeed, if we multiply 
the first n equations by xi' and sum over i = 1, . . ~, n, then taking (1.7) and (1.15) into 
account, we obtain the equation 

from which, putting Xk+, # 0 we obtain the last (a = n 4 1) equation of (1.17). Consequently, 
the number of independent equations of motion in the parameteric form (1.17) is equal to the 
number of independent Lagrangian coordinates qi. The general solutions of the equations (1.17), 
(1.5) depend on 2n -r arbitrary constants. 

Let us equate the equations of motion (1.2) with the parameteric equations 
equations (1.14) we easily establish the relations 

* aA aL 
-I’-, pi~-$=+(i=l,. . . , II), dA aL 

ds.- t aqi 1 t 

---=t’T 
ozn+l 

ah n 

--;-=L- At1 = asn+l c aL 
1 qi’ T = - H (qiv tt qi’) 

*=I 1 

(1. 17).Varying 

(1.18) 

Clearly, the momentum vector of the system in variables X, is equal to the momentum-energy 
vector in variables qi. 

Using the time t as the parameter z and taking into account the relations (1.8), (1.181, 
we find that equations (1.17) for a = 1,...,n take the form of the equations of motion (1.2), 
and for a = n + 1 the form of the energy equation 

(1.19) 

which follows, as we know, from the equation of motion (1.2). 
Thus we see that in the case of non-holonomic systems with constraints of the form (l.l), 

the dynamics based on the function L(q,t,q’), or in short the L-dynamics, also represents a 
form of the h-dynamics in which the variable G,,, = i plays the part of a coordinate of the 

space R,+,, as well as of the parameter on the curves Xi = Xi (t) I71. 

2. We shall now assume that the following conditions hold for the non-holonomic system 
in question: 

(2.1) 
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These conditions.mean that the functions .I (=a,,~,') and L (Q. t,q') do not depend explic- 
itly on the variable x,,+i = t, while the functions ~F,/t3~,,+~ vanish by virtue of the connection 
equations (1.5), or in other words, the functions fz (99 i) are homogeneous in '12'. We assume 
for simplicity that the constraints (1.1) do not depend explicitly on t. 

When conditions (2.1) hold, the last equation of (1.171, or equation (1.191, yields the 
following energy integral: 

ah 
7=---_(q,q’)=-hhconst 
a=*+1 

12.21 

Here the coordinate z,,+i = t is cyclic /lo/ and the first integral of (2.2) corresponds 
to it. The function A(x,,&') however depends explicitly on &,+r. This variable can be 
eliminated from the Hamilton principle (1.16) by using the energy integral (2.2) or the 
explicit expression 

xk+l = t’ = Cp (417 qi’, h, (2.3) 

following from it, and replacing the variable xk+r in (1.16) by it, or by considering the 
integral (2.2) as a supplementary relationship /lo/. 

Note that the solution of (2.2) in the form (2.3) is impossible only in the exceptional 
case when the function t(q,q’) is the sum of homogeneous functions of the zeroth and first 
degree in qI’ /l/. 

Using the first approach we introduce the Routh function 

n . 
H(q~,q,‘,h)=h--x,,=h+hx,+,=E~q:t’ 

IfI c=1 aqi’ 
(2.4) 

We must replace, on the right-hand sides of these equivalent expressions, xA+r = t' by 
(2.3). Replacing A (G, G') by l? (qt. qt’, h)- ht’, in (1.16) we obtain the variational equation 

n 

s AR (qi, qi’, h) dt = 0, Aqi = 0 : t = to, TI 
7. 

which expresses the principle of least action in Jacobi form, where the constant h has a 
single fixed value for all comparison curves. 

For example, in the case of an ordinary non-homonomic dynamic system for which the 
Lagrange function is 

L (q, q’) = -+ 2 
i. j=l 

%j (d C!i’qj* + 2 4 (4) Qi’ + kl (q) 

PI 

Eq.(2.5) will take the well-known form 

(2.5) 

(2.6) 

r;A(ll---lj’ n 2(h+-Ld iz, aijqi’q; + ?I a,q,‘) ds = 0, Aq4 = 0 : T = tot 71 
r. 

The principle (2.5), taking (1.9) and (2.1) into account, yields the differential equa- 
tions for the real trajectories of the system 

d dR dR c aF, 
xYq-Tq= ‘. wq- (i = 1,. . . , n) 

1 

(2.7) 

which must be supplemented by the constraint equations (1.5). By integrating the-equations 
(2.7), (1.5), we can obtain the parameteric equations of the trajectory of the real motion 
of the system in the configurational space I&,, not containing time. The time dependence can 
be found by integrating (2.3), which thus complements the variational equation (2.5). Taking 
into account the relations R =(L + h)t' and replacing the parameter z by t we find, that 
according to (2.3) equations (2.7) take the form of the equations of motion (1.2). 

Using the energy integral (2.2) we can reduce the initial Lagrange system with constraints, 
as in the case of a holonomic system /ll/, to a Lagrangian system with a reduced number of 
degrees of freedom. Indeed, let us take one of the Lagrange coordinates as the parameter r 

e-9. 9r, and express the quantity ql’ appearing in the energy integral in the form 

9t3.+-$ (Qir4;r h, (2.8) 

where q,’ = dq#.ql, t’ = dtldq,, and q.. = ql’q,’ (s = 2, . . ., n). Substituting (2.8) into (2.4) and (l.l), 
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we obtain the following expression for the Routh function: 

(2.91 

and the constraint equation jr (qi,qt’) = 0 (I = i,...,r) in the variables qi. qI< Here the princ- 
iple of least action in the Jacobi form (2.5) takes the form 

s 6fi(qi,q,',h)&x=O, @,=O: r?z=&‘.q1’ (2.10) 
PI’ 

where q14, qll are the values of the variable q1 for the initial and final position of the 
system, and the variations 69, satisfy the conditions 

n 

c J;$8q,=O (l=i,...,r) 
s-2 ’ 

into which conditions (1.4) transform, provided that we remember that in the present case we 
should write /12/ 6q, = 0, and take into ac-count conditions (1.13) and (1.10). 

Principle (2.10) yields the equations of motion of the system 

(2.11) 

representing the Jacobi /12/-Whittaker /11/ equations generalized to include non-holonomic 
systems. 

In the case of an ordinary non-holonomic dynamic system with Lagrange function (2.6), the 
Routh function is 

II (91, qa’, h) = 2 VW + Q, (2.12) 

where 

We note that (2.10) has the form of the Hamilton principle. It follows that the principle 
of least action in Jacobi form (2.5) for a non-holonomic system, with constraints (1.1) and 
the Lagrange function L(q,q*) f or which the energy integral (2.2) exists, is identical with 
the Hamilton principle (2.10) for a reduced system with constraints fi (q~,qi’) -0 and Lagrange 
function R (qi, q,‘, h) /U/. 

In the second approach, when the integral (2.2) is regarded as a relationship supplement- 
ing the variational equation, we replace the function A(+,&') in (1.16) by its expression 

which follows from (2.4). As a result we obtain the new variational equation 

(2.13) 

with the additional relation (2.2) in which the constant h has a single fixed value for all 
comparison curves. Equation (2.13) expresses the principle of least action in Lagrange form 
written in parametric form. If we take the time t as the parameter T, equation (2.13) will 
take the well-known form of the Lagrange principle in the space &, 

(2.14) 

taking conditions (2.2) and (1.10) , and (1.13) into account. The upper limit t, in (2.14) is 
not fixed, but depends on the comparison curve. 

3. We shall consider a system of material points acted upon by potential forces with 
force function u(ry) and constrained by the following perfect, finite non-stationary 



constraints: 

‘p* (I& t) = 0 (s = 1, . ” . , kj (3.1 

and non-integrable constraints homogeneous in r,' = dr,Jdt. Here r,(v = i,:.., iv) are the radius 
vectors of the points of the system relative to the origin of the inertial coordinate system 
which can be expressed, after introducing the Lagrange coordinates ~*(i=1,...,?&.=3iV--), 
in the form of the functions 

rv = rv (a, . . ., qn, t) (v = 1, . . ., iv) 

Here the constraints (3.1) are satisfied identically and the non-integrable constraints 
take the form (1.1). The Lagrange function is L(q, t, $) = T + U where T(q,t,i) is the 
kinetic energy, and the force function U(g,t) in this case has the form (2.6)‘ i.e. L = 15, + 

Lx + L* and 

Lz=T,-_+ 2 
n 

aijqi qj 1 * * LIsTI= 1: aiqi', Lo=To+U 
c i, j-1 t-1 

The equations of motion (l-2), (1.1) lead to an equation of the form (1.19) expressing 
the generalized energy theorem 

d(Tr- To---U)=- g-at + &A,$@, 
1.4 

(3.2) 

since in the present case we have 

H (q, t, q’) = L, - L, = T, - T, - U 

On the other hand, according to the general theorem on kinetic energy we have the follow- 
ing differential equation: 

(3.3) 

where&are the reactions of the constraints (3.1). Clearly, in the case of non-stationary 
constraints (3-l), equation (3.2) differs from (3.3), i.e. only the equations (1.2), (1.1) 
prevent us from obtaining the general theorem on kinetic energy. This is understandable, 
since equations (1.2) do not contain the reactions of the constraints (3.1) which provide a 
contribution to the energy change according to (3.3). 

Passing now to the coordinates q, and integrating both sides of (3.3), with respect to 
time, we obtain the well-known theorem on energy in its final form 

T~q,t,q’)-~~q,~) =iZtR,dr,+co=t (3.4) 
t. V 

The integral on the right-hand side of (3.4) can generally be found only after inte- 
grating the system of differential equations of motion; therefore, relation (3.4) expresses in 
general only what it represents, namely the relation between the energy and the work of the 
reactions of constraints /13/. However, when the perfect constraints (3.1) do not depend 

explicitly on time, xR,,*dr, ~0, and (3.4) becomes the first integral 
Y 

T (q, q*) - U (q) = Const (3.5) 

which also follows from (3.2) since in this case we have 

T=T2, ~L/c?t=O~-&~=O. 

When the constraints (3.1) are non-stationary, cases are possible when the function L 

does not depend explicitly on time. In these cases, if 

x+q;=o, 

then equation (3.2) yields the first integral of the form (2.2) 

T, (9, 9') - T,, (9) - U (q) = h 
which however does not follow directly from (3.3). 

Combining (3.2) and (3.3), we find the expression for the work 
the constraints (3.1) over the real displacement of the system 

E R,.dr,=d(Tl+2T,)- $ dt f z PI dq,. 
af, d 

qi 
l.i 

done by the reactions of 

(3.6) 



obtained earlier /14/ for the case of linear homogeneous constraints (1.1). Since the con- 
straints (3.1) are assumed to be perfect, 
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where R, is the generalized reaction of the non-stationary constraints (3.1) corresponding to 
the coordinate t = q. and representing the strength of the non-stationary constraints (3.1). 
If we assume that go' = 1, the kinetic energy can be written as the quadratic form /15/ 

where alo = at (q), a,,,, = 2T,, and we obtain the relation 

Dividing both sides of (3.6) by dt, we obtain a Lagrange-type equation for the coordin- 
ate t = 90 of the non-holonomic system 

(3.7) 

The above equation can be derived independently of (3.2), (3.3), by projecting the Newton 
equation on to the direction ar,,let and summing over v. This is how an equation of the form 
(3.7) was obtained in /15/ for a holonomic system. 

Equation (3.7) can be used to determine the intensity R, of reactions of the non-station- 
ary constraints (3.1). In the case of a single constraint it enables us to determine its 
reaction after integrating (1.2), (1.1). We note that in /16/ a method is also given for 
determining the reaction of non-stationary constraints by projecting on to the direction of 
the vector ar,lat. 

Using the Lagrange equations for qi and t, an equation of the type (3.4) was obtained in 
/15/, which was called the energy integral. However the equation contains an a priori 
unknown quantity R, and, as was said before, cannot be used as the first integral. 

We find, however, that supplementing the equations (1.2), (l.l), with (3.7) obtained 
independently of (3.2) and (3.3), is useful not only in determining R,, but also in deriving 
from these equations the theorem on kinetic energy (3.3). To do this it is sufficient to 
combine (3.2) and (3.6), or to obtain (3.2) from (3.3) it is sufficient to subtract from (3.3) 
equation (3.6), which is equivalent to equation (3.7). 
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